「Google Cloudのスタンス」と「製造業のAI活用の要点」(後編) 特集|AI実装の現在地点–トップITベンダーの捉え方 | データで越境者に寄り添うメディア データのじかん
カテゴリー
キーワード

「Google Cloudのスタンス」と「製造業のAI活用の要点」(後編) 特集|AI実装の現在地点–トップITベンダーの捉え方

前編では、Google CloudのAIに関するスタンスやAI実装に向けた取り組みなどが語られた。後編では、話題はより詳細な内容に及び、製造業におけるAI活用における要点、そしてビジネスにおける生成AIの活用の展望などについて意見が交わされた。

         

(左|ゲスト)グーグル・クラウド・ジャパン合同会社インフラストラクチャー・ソリューションズ技術理事 黒田 晴彦氏
(右|ホスト)ウイングアーク1st株式会社 取締役 執行役員事業統括担当 兼 CTO 島澤 甲

製造業が生成AIで課題解決を実現する「4つの導入ステップ」とベースとなる「データ戦略」

島澤:前編の最後で、人材不足をはじめとする日本の製造業の課題解決に、生成AIを活用するという話題が出ました。しかし現状はまだ導入・活用が進んでおらず、使っていたとしても、昔ながらのロジックベースのツールを「AI」と呼んでいるようなケースも少なくありません。そこで今回は、製造業における生成AI活用について押さえるべきポイントについて、詳しくお聞かせいただけますか。

グーグル・クラウド・ジャパン合同会社インフラストラクチャー・ソリューションズ技術理事 黒田 晴彦氏

黒田:社員の方が実際に生成AIに触って、実感を持って頂くことが出発点になります。生成AIを試用中もしくは本番利用中の企業が昨年後半には50%を超えたという調査結果がありますので(*1)、日本の製造業でも多くの企業で生成AIを試しているのではないかと思います。

ここで押さえておきたいのは「消費者向けの生成AIサービスは使わない」ということです。消費者向けに無償で提供されているサービスは、入力したデータを学習に利用されてしまう可能性があるからです。企業向けに提供されている生成AIをご利用頂くことが重要です。例えばGoogle CloudはGeminiなどの企業向けの生成AIでは、ユーザーデータを学習に使わないことを明言しています。

この企業向けの生成AI基盤モデルを社内で使ってみて感触を確認する、というのがステップ1になると思います。生成AIがインターネットの公開情報から学習した範囲(上図の右側)で何ができるのか試してみると良いと思います。例えばGoogle Cloudが提供するVertex AI Studioをご利用頂くと手軽にさまざまなことを試すことが可能です。(*2)

(*1)https://www.gartner.com/en/newsroom/press-releases/2023-10-03-gartner-poll-finds-55-percent-of-organizations-are-in-piloting-or-production-mode-with-generative-ai
(*2)https://cloud.google.com/generative-ai-studio?hl=ja

島澤:ステップ1は、生成AIに関心を持つ社員が個人的に試してみるレベルですね。

黒田:その通りだと思います。次のステップ2は、社内の情報を生成AIで扱う段階です。業務に本格的に生成AIを活用するためには、一般公開情報を学習した基盤モデルだけでは不十分で、社内に蓄積された情報を活用することが必要になると思います。

ステップ2のお客様では「様々な社内ドキュメントの中から必要な箇所の情報を検索して、要約してわかりやすく表示する」などの取り組みを行っています。製造業のお客様では、工場内に蓄積された情報活用を試している方もおられます。ですが、思ったような結果がでない、という声を聞くことがよくあります。

島澤:確かに私たちの周りを見ても、社内情報は入れてみたけれどインパクトは薄く、「こんなものなのかな」で止まってしまっているケースをよく耳にします。そこを乗り越えて先に進むには、何が必要なのでしょうか。

黒田:ここから先に進むためには、生成AIを使って何をしたいか、より明確にしていく必要があります。もし、もともと持っている情報自体が生成AIの対象として適していない場合は、情報の保持の仕方から見直す必要があります。つまり、生成AI活用に適した社内情報の整備・活用方法の検討、いわゆる「データ戦略」を立案することが望まれます。

ハルシネーション(*3)を避けて社内の情報を生成AIで効果的に活用するためには「検索拡張生成(RAG)」(*4)を活用することも求められます。生成AIを活用して着実に業務の成果を上げていくためには、単に生成AI基盤モデルを使うだけではなく、「生成AI活用システム」という「アプリケーションシステム構築」を行うことだと考えると良いと思います。

ステップ3は、社内システムとの接続です。生成AIの対象となるデータソースが「社内システム」に拡張した形態です。先ほど述べた「生成AI活用システム」というアプリケーションの一要素に社内システムが加わると捉えていただくと良いと思います。これによって実務への活用がより深まります。そして、最後のステップ4では、生成AIの対象をお客様情報にまで広げ、お客様サービスと接続して、パーソナライズされた新しいサービスを提供していきます。

企業向け(ステップ1〜4)(黒田氏のスライドより)

(*3)What are AI hallucinations? : https://cloud.google.com/discover/what-are-ai-hallucinations
(*4)RAG : Retrieval-Augmented Generation

島澤:ステップ2の課題として挙がった「データ戦略」が明確にないからこそ、「今ある社内情報が生成AIには正確に読めていない」という状況は、非常に重要な示唆ですね。生成AIの「分かりやすさ」ゆえに陥りやすい失敗だと思います。対応策を教えていただけますか。

ウイングアーク1st株式会社 取締役 執行役員事業統括担当 兼 CTO 島澤 甲

黒田:はい、お客様の環境や業務によって異なりますが、いろいろな取り組みが考えられると思います。

「データ戦略」を考えるうえで、まず現状把握が必要だと思います。いまお持ちの個々の情報、例えば報告書、設計書、議事録、カタログ、マニュアルなど、生成AIが内容をどの程度正確に要約できるか、必要箇所を見つけ出せるか、など試してみては如何でしょうか。人が読んでもわかりにくいものは、生成AIにとってもわかりにくい可能性が高いです。並行して、対象となる業務の情報が今どのように管理されているかをレビューして、生成AIを活用する場合は今後どのようにしていけばよいか、整理をしていくと良いと思います。

データの整備方法が固まってきたら、それに基づいてRAGの技術を使って情報を取得して生成AIを活用して質問に応じて最適な回答を生成することが可能になってきます。この分野は日々技術革新が起こっていますので、スモールスタートし、着実に進化させていく取り組みが重要になってきます。尚、Google CloudのVertex AI Searchを使って頂くと、簡単にRAGの技術を試して頂くことができます。(*5)

製造業の場合、膨大な画像情報や図形情報を保有しています。これをシステムで活用するためには説明タグをつけるアノテーションの作業が必要ですが、設計部門、製造部門、販売部門など、さまざまな部門で活用できるようにアノテーションを行うと有効な情報資産が生み出されることになります。全て人手で行うのは大変な作業ですが、Geminiを使うことでこの作業を効率化できる可能性があります。(*6) 

(*5)https://cloud.google.com/enterprise-search?hl=ja
(*6)https://cloud.google.com/vision?hl=ja

島澤:確かに、コンピュータに読ませるには向いていない非定型の情報を構造化する作業を、ある程度生成AIにやらせることができるならば、期待値はかなり高いですね。

黒田:実際にお客様がお持ちのデータで試して頂ければ、どの程度活用できるかがすぐわかりますので、「まず、やってみませんか」とお話しています。「データ戦略」とともに、ツールとして生成AIを使いこなすには、実際の経験を重ねて「どうすればうまくメリットが得られるか」という知見の蓄積が不可欠です。これを継続して続けると、実践していない場合と比べてかなりの差がつくと思われます。

尚、製造業における生成AIの適用分野についてはGoogle CloudのBlogでもご紹介しています。(*7)

生成AIの製造業における5つの適用分野(黒田氏のスライドより)

(*7)https://cloud.google.com/blog/topics/manufacturing/five-generative-ai-use-cases-for-manufacturing?hl=en

生成AIに丸投げではなく、効率化できるところに効果的に使う

島澤:製造業の方々に対する今後のサポートとして、先述で挙がったシステムとの連携やAPIも含めたインターフェースなどを提供する構想はあるのでしょうか。

黒田:はい、Google Cloudは生成AI基盤モデルを始めとする各種AIソリューションをご利用頂くために各種APIを提供しています(*8)。

また、生成AI利用のために各企業内でのAPI活用が急増していて、設定ミスの防止やセキュリティの強化などが課題として指摘されつつあります。Google Cloudは、APIの管理強化のためにApigeeをご利用頂くことをお勧めしています(*9)。

(*8)https://cloud.google.com/ai/apis?hl=ja
(*9)https://www.googlecloudcommunity.com/gc/Cloud-Product-Articles/GenAI-and-API-Management-Security-Scaling-and-Democratization/ta-p/714732

Google Cloudが考える「生成AI」と「人」の少し将来の話

島澤:少し将来の話をしていきたいと思います。このとき気になるのが、生成AIがいろいろなデータを得てそれにもとづいた知見の提供や判断までできるようになると、人手がなくても仕事が進むようになるでしょう。しかし同時に、AIが生成したものが正しいかどうかを見極められる人もいなくなるというジレンマが生まれるのではないかという懸念があります。Google Cloudでは、そうした状況を見越して、対応策をすでに用意しているのでしょうか。

黒田:生成AIに限らず、AIを活用するうえで説明責任は非常に重要なポイントとなります。Googleは「AIの原則」(*10)の中で「人々への説明責任(Be accountable to people)」を掲げていて、「Vertex Explainable AI」(*11)のサービスを提供するなどブラックボックス回避のために力を入れています。

生成AIにおいても、生成されたコンテンツが何をベースにしているか判別しやすいようにグラウンディング技術の活用について紹介しています。(*12)

現時点では、生成AIに全て任せて無人化するのではなく、人によるチェックを組み込んだビジネス形態を構築して省力化・省人化する、というのが良いと思います。ご存じのように日本の製造業の労働生産性はかつてはOECD諸国トップでしたが2020年には18位まで下がっています。今から地道に進めていくことで、将来労働生産性が世界一に返り咲くというのも夢ではなく、今後大いに現実味を帯びてくると思っています。

日本の製造業の労働生産性(黒田氏のスライドより)

(*10)https://ai.google/responsibility/principles/
(*11)https://cloud.google.com/vertex-ai/docs/explainable-ai/overview?hl=ja
(*12)https://cloud.google.com/vertex-ai/generative-ai/docs/grounding/overview?hl=ja

島澤:面倒な仕事を生成AIに丸投げできるわけではないけれど、地道に使えば確実に未来の成果につながるというわけですね。

黒田:All or Nothingで考える必要はないと思います。生成AIを現状で仕事のどの部分に使うと効果的かを考える方が建設的です。私共ではブログの中で製造業で生成AIの利用が期待されている分野を5つリスクとアップしています。これらの分野で3割の効率化が見込めるならば全体では多大な効果を生むと思われます。そうやって実績を重ねて行く中で「製造業に寄り添う生成AI」への育っていってくれることを期待しています。

生成AIを使って世界を変えていく人々を、これからもサポート

島澤:生成AIを使っていく上で避けられないのが、倫理的あるいは社会的な課題です。そうした観点におけるGoogleのスタンスについてお聞かせください。

黒田:CEOのスンダー ピチャイは、2017年のGoogle I/OでGoogleは「AI-First Company」になると宣言してAIに関する技術開発に取り組んでいますが、一方、「Be socially beneficial.(社会的に有益であること)」、「Avoid creating or reinforcing unfair bias.(不当な偏見を生み出したり、強化したりしないようにすること)」などを含む「AIの原則」を公表して、単に技術を追求するだけではなく、倫理的・社会的課題にしっかり対応しながらAIの更なる活用を目指していく、姿勢を明確に示しています。

この考え方はブレることがなく、彼は2023年のI/Oでも「Making AI more helpful for everyone」(AIをすべての人にとってさらに役立つものにする)と話しています。(*13)

(*13)https://blog.google/intl/en-africa/company-news/google-io-2023-making-ai-more-helpful-for-everyone/

島澤:今後のGoogle CloudにおけるAIの展望を伺いたいと思います。Googleの技術に対する基本的なスタンスとして、クローズドではなくむしろよりオープンにしていくこと、とお聞きしています。その具体的な展開として、さまざまな企業との協業も視野に入れているかと思います。

黒田:Googleは、KubernetesやTensorFlowを始め、さまざまな技術のOpen Sourceプロジェクトに取り組んできていますが(*14)、生成AIに関してもオープンモデルのGemmaを提供しています。(*15)

また、Vertex AIのModel Gardenでは、自社の基盤モデルだけでなく、サードパーティやOSSの基盤モデルも提供しています。(*16) AIの分野は裾野がとても広くてGoogleだけでカバーできるものではないため、AIパートナーのエコシステムを構築することが重要だと考えています。(*17)

ウイングアーク1stは、非常に多彩な領域のソリューションを手がけていて、多くのユーザーに評価される製品を提供していますが、既にグーグル・クラウドの大切なパートナーになって頂いています。現在ウイングアーク1stのBIツールのMotionBoardからは、BigQuery データに連携できるようになっています。

今後は、生成AI分野でも両社で連携を強めていけると嬉しいです。先日のWARP(WingArc1st relationship Platform)でもGoogle CloudのGeminiを生成AIの連携先の1社として取り上げて頂いて感謝しております。MotionBoardに生成AI Geminiを組み込んで頂き、利用者が自然言語で操作すると、そのバックエンドにBigQueryと連携する動作形態など、さまざまな取り組みが可能だと思っています。

UpdataNOW23における黒田氏のセッションスライドより)

(*14)https://opensource.google/projects/#/explore/featured
(*15)https://cloud.google.com/blog/ja/products/ai-machine-learning/gemma-model-available-in-vertex-ai-and-via-gke/?hl=ja
(*16)https://cloud.google.com/model-garden?hl=ja
(*17)https://cloud.google.com/partners/ai?hl=ja

島澤:ありがとうございます。ぜひ今後も、当社の製品やサービスのポテンシャルを高められるよう、お力を貸してください。最後に、Google Cloudが考える「生成AIによって変わる社会」として、将来の予測やビジョンをお聞かせください。

黒田:Googleは、AIを用いて社会課題を解決するために、自社だけではなく、さまざまな組織と連携することが大切だと考えています。そして、安心・安全なAIシステムを推進し、AIシステムに対する信頼を構築して、責任あるAIをさまざまな他の企業とも連携して取り組んでいくことをコミットしています。(*18)

CEOのスンダー ピチャイは、The Keywordというブログサイト(*19)で次のように述べています。“Just as cloud computing changed how businesses worked a decade ago, AI is going to drive incredible opportunity and progress all over again. ”(10 年前にクラウド コンピューティングがビジネスのやり方を変えたのと同じように、AI は再び素晴らしい機会と進歩をもたらすでしょう。)

我々は、実際にビジネスで変革を起こし社会に進歩をもたらすのは、クラウド技術や生成AIを利用頂くお客様だと考えています。(*20)

(*18)https://blog.google/outreach-initiatives/public-policy/our-commitment-to-advancing-bold-and-responsible-ai-together/
(*19)https://blog.google/products/google-cloud/google-cloud-next-2024-generative-ai-gemini/#next-cloud
(*20) Google Cloud の使命は、あらゆる組織が挑む、デジタルによる変革を加速させることです。
Our mission is to accelerate every organization’s ability to digitally transform its business.

ですので、お客様が「生成AIによって社会を変えていく」ことに大きな期待を寄せて、お客様の支援に尽力していきたいと思っています。

島澤:Google Cloudは、それを手伝う立場ということですね。ぜひ私たちも一緒にサポートしていきたいと思います。本日はありがとうございました。

今回の対談はウイングアーク1stが開設したイノベーションラボ「D.E.BASE」で行われた。

 
黒田 晴彦 氏(写真左)グーグル・クラウド・ジャパン合同会社 インフラストラクチャー・ソリューションズ 技術理事
2009年、三井物産(株)においてIT推進部 副部長に就任、情報戦略委員会の技術担当委員を務め、Chief IT Architectとしてグローバルシステム全体像(IT-Landscape)の設計・構築を担当。また、SAP社、マイクロソフト社、アマゾンウェブサービス社などの日米欧各地のコミュニティ活動に参画。2016年、デルジャパン最高技術責任者に就任、2020年8月からはデル・テクノロジーズ(株)最高技術責任者として、エンド・ツー・エンド ソリューションの展開を統括。2021年9月より、現職。
 
島澤 甲(写真右)ウイングアーク1st取締役 執行役員 事業統括担当 兼 CTO
1981年東京生まれ。幼少期より、廃棄機器を解体し仕組みを理解することに没頭。大学時代はスパコンで解析する日々を送り、卒業研究は「遺伝子の解析」。遺伝子操作プログラムで特許を取得する。2010年 ウイングアーク(現ウイングアーク1st)に入社後は「データの活用」を追求。電気使用量や温度や湿度の変化など自宅を実証実験場として遠隔地からでもコントロールできるようIoT化を実践。2016年、執行役員CTOに就任。2021年 取締役 執行役員事業統括担当 兼 CTOに就任、現在に至る。
 

(取材・TEXT:JBPRESS+稲垣 PHOTO:Inoue Syuhei 編集:野島光太郎)

 
×

メルマガ登録をしていただくと、記事やイベントなどの最新情報をお届けいたします。


データ活用 Data utilization テクノロジー technology 社会 society ビジネス business ライフ life 特集 Special feature

関連記事Related article

書評記事Book-review

データのじかん公式InstagramInstagram

データのじかん公式Instagram

30秒で理解!インフォグラフィックや動画で解説!フォローして『1日1記事』インプットしよう!

おすすめ記事Recommended articles

掲載特集

デジタル・DX・データにまつわる4コマ劇場『タイムくん』 デジタル・DX・データにまつわる4コマ劇場『タイムくん』 データのじかんをもっと詳しくデータのじかんフィーチャーズ データのじかんをもっと詳しく データのじかんフィーチャーズ 「47都道府県47色のDXの在り方」を訪ねる『Local DX Lab』 「47都道府県47色のDXの在り方」を訪ねる『Local DX Lab』 DXの1次情報をを世界から『World DX Journal』 DXの1次情報をを世界から 『World DX Journal』 データで越境するあなたへおすすめの『ブックレビュー』 データで越境するあなたへおすすめの 『ブックレビュー』 BIツールユーザーによる、BIツールユーザーのための、BIツールのトリセツ BIツールユーザーによる、BIツールユーザーのための、BIツールのトリセツ CIOの履歴書 by 一般社団法人CIOシェアリング協議会 CIOの履歴書 by 一般社団法人CIOシェアリング協議会 なぜ、日本企業のIT化が進まないのか――日本のSI構造から考える なぜ、日本企業のIT化が進まないのか――日本のSI構造から考える 日本ビジネスの血流である帳票のトレンドを徹底解説 日本ビジネスの血流である帳票のトレンドを徹底解説 データを武器にした課題解決家「柏木吉基」のあなたの組織がデータを活かせていないワケ データを武器にした課題解決家「柏木吉基」のあなたの組織がデータを活かせていないワケ BI(ビジネスインテリジェンス)のトリセツ BI(ビジネスインテリジェンス)のトリセツ 入社1年目に知っておきたい差が付くKPIマネジメント 入社1年目に知っておきたい 差が付くKPIマネジメント CIOLounge矢島氏が紐解くトップランナーたちのDXの“ホンネ” CIOLounge矢島氏が紐解く トップランナーたちのDXの“ホンネ” データのじかん Resources越境者のためのお役立ち資料集 データのじかん Resources 越境者のためのお役立ち資料集 AI実装の現在地点-トップITベンダーの捉え方 AI実装の現在地点-トップITベンダーの捉え方 データでビジネス、ライフを変える、面白くするDATA LOVERS データでビジネス、ライフを変える、 面白くするDATA LOVERS データマネジメント・ラジオ by データ横丁 データマネジメント・ラジオ by データ横丁 データのじかんNews データのじかんNews データ・情報は生もの!『DX Namamono information』 データ・情報は生もの! 『DX Namamono information』 ちょびっとラビット耳よりラピッドニュース ちょびっとラビット耳よりラピッドニュース AI事務員宮西さん(データ組織立ち上げ編) AI事務員宮西さん(データ組織立ち上げ編) 藤谷先生と一緒に学ぶ、DXリーダーのための危機管理入門 藤谷先生と一緒に学ぶ、DXリーダーのための危機管理入門 生情報取材班AI時代に逆行?ヒトが体感した「生情報」のみをお届け! 生情報取材班AI時代に逆行?ヒトが体感した「生情報」のみをお届け! データはともだち 〜怖くないよ!by UpdataTV Original データはともだち 〜怖くないよ!by UpdataTV Original データ飯店〜データに携わるモノたちの2.5thプレイス by UpdataTV〜 データ飯店〜データに携わるモノたちの2.5thプレイス by UpdataTV〜 インサイトーク〜データで世界を覗いてみたら〜by WingArc1st + IDEATECH インサイトーク〜データで世界を覗いてみたら〜by WingArc1st + IDEATECH
close close