製造業のKPIとは?KPI例とKPI(ロジック)ツリーを解説 | ページ 3 | データで越境者に寄り添うメディア データのじかん
カテゴリー
キーワード

製造業のKPIとは?KPI例とKPI(ロジック)ツリーを解説

         

製造業のKPI(ロジック)ツリーの作り方

製造業のKPIはKGIにつながる要素においては、QCDのプロセスで培った指標を用いることになります。

ただそれだけでは、製造現場の問題・課題は表面からしか探すことができません。

さらに深部に潜んでいるQCD向上の要素を探しだすには、デジタル技術によって蓄積したデータ活用が必要不可欠です。

昨今の製造機器は自動で加工、組み立てを実施するのと同時にデータを取得する機能も備えています。

取得したデータは、データベースエンジンとBIツールを活用することで、KPIロジックツリーの作成のみならず、KPIマネジメントにも活用することができます。

データを分析する

昨今の製造業では、入荷からに出荷に至るまでの作業を自動に行うのと同時に、様々なデータも収集できます。

製造リードタイム、生産量、時間稼働率、不良率、原価率といった製造業の指標をより細分化する事で今まで気が付かなった振る舞いや傾向が「見える」ようになります。

ただ無駄を減らし、効率をあげるだけでは、QCDのC(Cost:原価)、D(Delivery:納期)の向上は期待出来ますが、Q(Quality:品質)の向上には繋がりません。

そこで昨今注目されているのが画像データとAIによる分析です。

特にユーザーに安心と安全を担保する検査の工程のデータは、製造の現場はもちろん、企画、開発、カスタマーサポートのQCDの向上にも活用することができます。

セグメントを分解する

セグメントとは、KGI、KPIがそれより下位のKPIの足し算で成立する場合の項を指します。

例えば、製造コストの場合、材料費、設備費、労務費、外注費などの和がKPIとして求められます。

セグメント分解では、品質、コスト、納期の指標をまずは足し算で分解することからはじめます。

行動を分解する

セグメントに分解したKPIをさらに分解すると、足し算ではなく、掛け算で算出されるKPIで構成されていることがわかります。

製造業のKPIとして良く活用されている“設備総合効率”では、時間に対する“ロス”を“行動”に分解してKPIの要素を抽出します。

数式でアプローチする

製造業の生産能力を総合的な観点で算出した“設備総合効率”では、“行動”の要素である“時間稼働率”、“性能稼働率”、“良品率”の内訳が重要になります。

例えば、時間稼働率=80%、性能稼働率=50%、良品率=90%の場合、設備総合効率は、36%になります。

この場合、時間稼働率、良品率は既に高水準なので向上の難易度は高いと判断するのが妥当です。

もっとも改善の余地のある“性能稼働率”に着目し、60%達成を目標とした場合、“設備総合効率”は43%(+7%)まで向上見込めます。

製造業では従来のQCDのプロセスより、数式で指標を算出することで、定量的なアプローチが試みられています。

これらの多くは、KPIにも適用が可能ですが、これまでは

  • ●粗い(精度が低い)データしか取れない
  • ●データの取得手段が無い
  • ●システムへのデータ入力の負担が大きい

といった問題でKPIを活用することができませんでした。

昨今ではデータベースエンジン、BIツールの登場によりこのような問題は解決されつつあります。

仮説を立てる

データでは、QCD向上の余地を示しているものの、KPIの要素の正体が不明確なケースは実は少なくありません。

データ化が可能なものは、新たに分析する事で追従できますが、そうでないものに関しては、仮説を立てて、検証する必要があります。

仮説を明らかにするための施策は、PDCAで実践する事でより高い確度で進められます。

仮説が立証されたKPIは、上位のKPIに繋げることでQCDの向上具合が計れるになります。

仮説の構造を明らかにする

先程紹介した仮説で更なるデータの分析でも行動に至る要素が分析できない場合、カットアンドトライ、消去法といった施策でその構造を明らかにしていきます。

これらの多くは、人手を必要とする工程に潜伏しているケースが多く、例えば、

  • ●技術者のスキル向上
  • ●適切な人員配置
  • ●従業員のモチベーション

などを要素としている可能性があります。

日本の製造業は、特殊な技術で成り立っている場合があり、自動化されていない工程も実は多く、このような領域をフォーカスすることで高い効果が得ることが期待できます。

構造の実証には比較的時間を要し、また上位のKPIに繋がらない可能性もあるため、製造現場全体のKPIから切り離した方が実証はスムーズに進みます。

KPI(ロジック)ツリーで可視化する

セグメント、行動で分解したKPIを抽象度の高い要素を頂点に置き、それの要素になるKPIを線(枝)で結びます。

これをツリーの末端の末端となる要素(葉)まで繰り返すことでKPIツリーが完成します。

KPIツリーを作成する事で、具体的な施策に至るまでのプロセスが網羅できるようになります。

また、いざ実践をするにあたって、注入すべきマンパワーや投資なども「見える化」されるので、経営面のリスクの回避にも繋がります。

製造業のKPI向上は、設備投資で対処できるものは、即座に対応し、そうでないものは、ナレッジ化といった観点で取り組むことで着実な向上が期待できます。

 
製造業で活用されている主なKPI
製造業のKPI(ロジック)ツリーの導入事例

1 2 3 4

×

メルマガ登録をしていただくと、記事やイベントなどの最新情報をお届けいたします。


データ活用 Data utilization テクノロジー technology 社会 society ビジネス business ライフ life 特集 Special feature

関連記事Related article

書評記事Book-review

データのじかん公式InstagramInstagram

データのじかん公式Instagram

30秒で理解!インフォグラフィックや動画で解説!フォローして『1日1記事』インプットしよう!

おすすめ記事Recommended articles

掲載特集

デジタル・DX・データにまつわる4コマ劇場『タイムくん』 デジタル・DX・データにまつわる4コマ劇場『タイムくん』 データのじかんをもっと詳しくデータのじかんフィーチャーズ データのじかんをもっと詳しく データのじかんフィーチャーズ 「47都道府県47色のDXの在り方」を訪ねる『Local DX Lab』 「47都道府県47色のDXの在り方」を訪ねる『Local DX Lab』 DXの1次情報をを世界から『World DX Journal』 DXの1次情報をを世界から 『World DX Journal』 データで越境するあなたへおすすめの『ブックレビュー』 データで越境するあなたへおすすめの 『ブックレビュー』 BIツールユーザーによる、BIツールユーザーのための、BIツールのトリセツ BIツールユーザーによる、BIツールユーザーのための、BIツールのトリセツ CIOの履歴書 by 一般社団法人CIOシェアリング協議会 CIOの履歴書 by 一般社団法人CIOシェアリング協議会 なぜ、日本企業のIT化が進まないのか――日本のSI構造から考える なぜ、日本企業のIT化が進まないのか――日本のSI構造から考える 日本ビジネスの血流である帳票のトレンドを徹底解説 日本ビジネスの血流である帳票のトレンドを徹底解説 データを武器にした課題解決家「柏木吉基」のあなたの組織がデータを活かせていないワケ データを武器にした課題解決家「柏木吉基」のあなたの組織がデータを活かせていないワケ BI(ビジネスインテリジェンス)のトリセツ BI(ビジネスインテリジェンス)のトリセツ 入社1年目に知っておきたい差が付くKPIマネジメント 入社1年目に知っておきたい 差が付くKPIマネジメント CIOLounge矢島氏が紐解くトップランナーたちのDXの“ホンネ” CIOLounge矢島氏が紐解く トップランナーたちのDXの“ホンネ” データのじかん Resources越境者のためのお役立ち資料集 データのじかん Resources 越境者のためのお役立ち資料集 AI実装の現在地点-トップITベンダーの捉え方 AI実装の現在地点-トップITベンダーの捉え方 データでビジネス、ライフを変える、面白くするDATA LOVERS データでビジネス、ライフを変える、 面白くするDATA LOVERS データマネジメント・ラジオ by データ横丁 データマネジメント・ラジオ by データ横丁 データのじかんNews データのじかんNews データ・情報は生もの!『DX Namamono information』 データ・情報は生もの! 『DX Namamono information』 ちょびっとラビット耳よりラピッドニュース ちょびっとラビット耳よりラピッドニュース AI事務員宮西さん(データ組織立ち上げ編) AI事務員宮西さん(データ組織立ち上げ編) 藤谷先生と一緒に学ぶ、DXリーダーのための危機管理入門 藤谷先生と一緒に学ぶ、DXリーダーのための危機管理入門 生情報取材班AI時代に逆行?ヒトが体感した「生情報」のみをお届け! 生情報取材班AI時代に逆行?ヒトが体感した「生情報」のみをお届け! データはともだち 〜怖くないよ!by UpdataTV Original データはともだち 〜怖くないよ!by UpdataTV Original データ飯店〜データに携わるモノたちの2.5thプレイス by UpdataTV〜 データ飯店〜データに携わるモノたちの2.5thプレイス by UpdataTV〜 インサイトーク〜データで世界を覗いてみたら〜by WingArc1st + IDEATECH インサイトーク〜データで世界を覗いてみたら〜by WingArc1st + IDEATECH
close close