- 更新:2022.02.15
- 公開:2018.09.17
「ビッグデータ」という言葉をよく耳にするようになりました。ビッグデータの重要性だったり、ビッグデータで世界が変わる、と言ったなんだかちょっと大げさ話だったり、グーグルがビッグデータ解析フォームにイーサリアムを追加した話だったり、なんだかよくわからないけれど、とりあえず集めなきゃいけないと思っている話だったり、ビッグデータで人の本性がわかる、という話だったり、始まったと思っていたらもうすでにビッグデータ時代の終焉、という言葉も出現していたり。
しかし、「そもそもビッグデータとは何ですか?わかりやすく説明してください」と改めて聞かれると、答えに窮する人も多いのではないかと思います。そこで今回は、ビッグデータの定義から活用例までご紹介します。
ビッグデータとは?
ビッグデータというと、つい大量のデータのことを思い浮かべてしまいますが、それだけを意味しているわけではありません。
ビッグデータとは、「様々な形をした、様々な性格を持った、様々な種類のデータのこと※1」を指します。実はビッグデータは、データの量(Volume)、データの種類(Variety)、データの発生頻度・更新頻度(Velocity)の3つのVからなり、いずれも重要な要素です※2。
IT用語辞典では、ビッグデータは下記のように定義されています。
ビッグデータとは、従来のデータベース管理システムなどでは記録や保管、解析が難しいような巨大なデータ群。明確な定義があるわけではなく、企業向け情報システムメーカーのマーケティング用語として多用されている。
多くの場合、ビッグデータとは単に量が多いだけでなく、様々な種類・形式が含まれる非構造化データ・非定型的データであり、さらに、日々膨大に生成・記録される時系列性・リアルタイム性のあるようなものを指すことが多い。今までは管理しきれないため見過ごされてきたそのようなデータ群を記録・保管して即座に解析することで、ビジネスや社会に有用な知見を得たり、これまでにないような新たな仕組みやシステムを産み出す可能性が高まるとされている。
ビッグデータの定義がわかったところで、今度はビッグデータの分析方法を見ていきましょう。例えば、あなたが新しいビールを売り出したいと考えたとします。
あなたが(1)特約店別の出荷情報と(2)今年は晴れる日が多いかどうか、のビッグデータを持っている場合、(1)から「地域別の売上」を把握することができますが、(2)から「その地域の天気は悪い日が多い」ということがわかる場合は、天気の悪そうなエリアを避けたマーケティング戦略を練ることができます。(1)と(2)のビッグデータを使って「ではどこで売れるのか」というビジネス拡大の課題のヒントを得ることができるのです。どこで売れるのかが分かれば、そこに広告費を集中投下するというマーケティングの意思決定をすることができ、その分得られる利益も変わってきます。
なおビックデータの対比としてよく耳にする「スモールデータ」とは、ビッグデータの特定のレコードだけを取り出し、扱いやすい形式にすることで有意義な洞察を可能にするデータなどです。
スモールデータについては、こちらの記事で解説していますので、併せてご確認下さい。
ビッグデータを構成するデータの種類
ビックデータは「様々な形をした、様々な性格を持った、様々な種類のデータのこと」と前述で解説しましたが、具体的にどのようなデータを指すのでしょうか?総務省の平成29年版の情報通信白書では、ビックデータを以下のように定義しています。
生成元 | 種類 | 説明 |
政府・行政 | オープンデータ | 『官民データ活用推進基本法』を踏まえ、政府や地方公共団体などが保有する公共情報 |
企業 | 知のデジタル化 | 農業やインフラ管理からビジネス等に至る産業や企業が持ちうるパーソナルデータ 以外のデータ |
M2Mデータ | 工場等の生産現場におけるIoT機器から収集されるデータ、橋梁に設置されたIoT機器からのセンシングデータ(歪み、振動、通行車両の形式・重量など)等 | |
個人 | パーソナルデータ | 個人の属性情報、移動・行動・購買履歴、ウェアラブル機器から収集された個人情報など |
引用元:総務省 平成29年度版 情報通信白書「ビックデータの定義及び範囲」
ビッグデータを利用した需要予測
さて、新しいビールを実際に発売しようと考えたとき、懸念点として存在するのは「在庫保有コスト」や「在庫切れ」などによる機会損失です。特にビールは季節による需要の変化が大きいため、精度の高い発注・生産計画が必要となります。
富士通は、ビッグデータを活用し、複数の需要予測のシナリオに基づき、一定期間先読みができるSCM(サプライチェーンマネジメント)向けのモデル予測制御技術を開発しました。これにより、リスクを抑えつつ長期的な利益を最大にする計画を立てることが可能になっています(参考記事)。このように、ビッグデータを使えば高度な意思決定も可能です。