Share!

ビッグデータが注目されている現在、それを分析するツールも重要です。

今回は大容量かつ複雑なデータを分析する際に使われる、OLAPツールに迫ってみたいと思います。

OLAPツールとは

OLAP(オーラップ)とは、OnLine Analytical Processingの略で「オンライン分析処理」のことです。BIツールの機能の1つで、データベースに蓄積された膨大なデータに対し複雑な集計・分析を行い、素早くレスポンスを返してくれます。ここでのオンラインとは、素早くレスポンスを返すという意味です。

データサイエンティストなどの専門家ではなくても検索・分析ができるようにGUI(グラフィックユーザインタフェース)が用いられていたり、表やグラフなどが使われていたりします。主にデータ分析の初心者向けのツールといえますね。

OLAPは、収集した膨大なデータから独自に多次元的なデータベースを生成します。多次元的なデータベースとは、「地域」「製品」「価格帯」といった複数の軸を持つデータベースのこと。このデータベースを基に、分析処理を行っていきます。例を挙げると、ドリルダウン(例えば「期間」次元の「年」階層から「月」階層に掘り下げる操作)、スライシング(例えば「製品」次元をスライスし、製品Aだけを対象としたデータに絞り込む操作)、ダイシング(例えば「地域」次元と「製品」次元を取り換える操作)などがあります。

データウェアハウスとの関係

via pixabay

過去記事「データマートとは? DWHとどう違う?そして話題のデータレイクとは?」でも取り上げましたが、データウェアハウス(DWH)とは「基幹系など複数のシステムから、必要なデータを収集し、目的別に再構成して時系列に蓄積した統合データベース」です。近年、ハードディスクの容量が大きくなり、膨大なデータを記録することができるようになりました。それによって、例えばスーパーの1カ月間のデータをすべて保存することができるようになったのです。

それに伴い、大量のデータを分析するツールが必要となりました。スーパーの例でいうと、売り上げが伸びるのは「何曜日」の「何時」なのか? 天気によってどう変わるか? 何と何が一緒に売れるのか? などを分析できるものが求められるようになります。加えて、専門家ではなく営業担当者や経理などの職種の人が簡単にデータを活用できることが求められました。OLAPは、これらを可能にするツールなのです。

1 2

この記事を読んだあなたにおすすめのタグ

この記事を読んだあなたにおすすめのタグ

「テクノロジー」ランキング

人気のカテゴリ